A 3D bioreactor model to study osteocyte differentiation and mechanobiology under perfusion and compressive mechanical loading
Abstract: Osteocytes perceive and process mechanical stimuli in the lacuno-canalicular network in bone. As a result, they secrete signaling molecules that mediate bone formation and resorption. To date, few three-dimensional (3D) models exist to study the response of mature osteocytes to biophysical stimuli that mimic fluid shear stress and substrate strain in a mineralized, biomimetic bone-like environment. Here we established a biomimetic 3D bone model by utilizing a state-of-art perfusion bioreactor platform where immortomouse/Dmp1-GFP-derived osteoblastic IDG-SW3 cells were differentiated into mature osteocytes. We evaluated proliferation and differentiation properties of the cells on 3D microporous scaffolds of decellularized bone (dBone), poly(L-lactide-co-trimethylene carbonate) lactide (LTMC), and beta-tricalcium phosphate (β-TCP) under physiological fluid flow conditions over 21 days. Osteocyte viability and proliferation were similar on the scaffolds with equal distribution of IDG-SW3 cells on dBone and LTMC scaffolds. After seven days, the differentiation marker alkaline phosphatase (Alpl), dentin matrix acidic phosphoprotein 1 (Dmp1), and sclerostin (Sost) were significantly upregulated in IDG-SW3 cells (p = 0.05) on LTMC scaffolds under fluid flow conditions at 1.7 ml/min, indicating rapid and efficient maturation into osteocytes. Osteocytes responded by inducing the mechanoresponsive genes FBJ osteosarcoma oncogene (Fos) and prostaglandin-endoperoxide synthase 2 (Ptgs2) under perfusion and dynamic compressive loading at 1 Hz with 5 % strain. Together, we successfully created a 3D biomimetic platform as a robust tool to evaluate osteocyte differentiation and mechanobiology in vitro while recapitulating in vivo mechanical cues such as fluid flow within the lacuno-canalicular network
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Acta biomaterialia. - 184 (2024) , 210-225, ISSN: 1878-7568
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2024
- Urheber
-
Rindt, Wyonna Darleen
Krug, Melanie
Yamada, Shuntaro
Sennefelder, Franziska
Belz, Louisa
Cheng, Wen-Hui
Azeem, Muhammad
Kuric, Martin
Evers, Marietheres
Leich-Zbat, Ellen
Hartmann, Tanja
Pereira, Ana
Herrmann, Marietta
Hansmann, Jan
Mussoni, Camilla
Stahlhut, Philipp
Ahmad, Taufiq
Yassin, Mohammed Ahmed
Mustafa, Kamal
Ebert-Dümig, Regina
Jundt, Franziska
- DOI
-
10.1016/j.actbio.2024.06.041
- URN
-
urn:nbn:de:bsz:25-freidok-2555063
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:55 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Rindt, Wyonna Darleen
- Krug, Melanie
- Yamada, Shuntaro
- Sennefelder, Franziska
- Belz, Louisa
- Cheng, Wen-Hui
- Azeem, Muhammad
- Kuric, Martin
- Evers, Marietheres
- Leich-Zbat, Ellen
- Hartmann, Tanja
- Pereira, Ana
- Herrmann, Marietta
- Hansmann, Jan
- Mussoni, Camilla
- Stahlhut, Philipp
- Ahmad, Taufiq
- Yassin, Mohammed Ahmed
- Mustafa, Kamal
- Ebert-Dümig, Regina
- Jundt, Franziska
- Universität
Entstanden
- 2024