Magnetically Driven Hierarchical Alignment in Biomimetic Fibrous Hydrogels

Abstract: In vivo, natural biomaterials are frequently anisotropic, exhibiting directional microstructures and mechanical properties. It remains challenging to develop such anisotropy in synthetic materials. Here, a facile one‐step approach for in situ fabrication of hydrogels with hierarchically anisotropic architectures and direction‐dependent mechanical properties is proposed. The anisotropic hydrogels, composed of a fibrous gel network (0.1 wt%), cross‐linked with magnetic nanoparticles (spheres, rods, and wires, <0.1 wt%) are readily formed in the presence of very low magnetic fields (<20 mT). The anisotropy of the nanoparticles is transduced to the polymer network, leading to macroscopic anisotropy, for instance, in mechanical properties. Electrostatic repulsion by the negatively charged nanoparticles induces an additional layer of order in the material, perpendicular to the magnetic field direction. The straightforward fabrication strategy allows for stepwise deposition of layers with different degrees or directions of anisotropy, which enables the formation of complex structures that are able to mimic some of the complex hierarchical architectures found in biology. It is anticipated that this approach of hydrogel alignment may serve as a guide for designing advanced biomaterials in tissue engineering.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Magnetically Driven Hierarchical Alignment in Biomimetic Fibrous Hydrogels ; day:03 ; month:06 ; year:2022 ; extent:9
Small ; (03.06.2022) (gesamt 9)

Urheber
Chen, Wen
Zhang, Zhaobao
Kouwer, Paul H. J.

DOI
10.1002/smll.202203033
URN
urn:nbn:de:101:1-2022060415082066393967
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:20 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Chen, Wen
  • Zhang, Zhaobao
  • Kouwer, Paul H. J.

Ähnliche Objekte (12)