Arbeitspapier

Correcting for Misclassied Binary Regressors Using Instrumental Variables

Estimators that exploit an instrumental variable to correct for misclassification in a binary regressor typically assume that the misclassification rates are invariant across all values of the instrument. We show that this assumption is invalid in routine empirical settings. We derive a new estimator that is consistent when misclassification rates vary across values of the instrumental variable. In cases where identification is weak, our moments can be combined with bounds to provide a confidence set for the parameter of interest.

Language
Englisch

Bibliographic citation
Series: IZA Discussion Papers ; No. 13593

Classification
Wirtschaft
Methodological Issues: General
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Subject
misclassification
measurement error
instrumental variables

Event
Geistige Schöpfung
(who)
Haider, Steven J.
Stephens Jr., Melvin
Event
Veröffentlichung
(who)
Institute of Labor Economics (IZA)
(where)
Bonn
(when)
2020

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Haider, Steven J.
  • Stephens Jr., Melvin
  • Institute of Labor Economics (IZA)

Time of origin

  • 2020

Other Objects (12)