Journal article | Zeitschriftenartikel

Semiparametric estimation of binary response models with endogenous regressors

In this paper, we propose a two-step semiparametric maximum likelihood (SML) estimator for the coefficients of a single index binary choice model with endogenous regressors when identification is achieved via a control function approach. The first step consists of estimating a reduced form equation for the endogenous regressors and extracting the corresponding residuals. In the second step, the latter are added as control variates to the outcome equation, which is in turn estimated by SML. We establish the estimator’s n-consistency and asymptotic normality. In a simulation study, we compare the properties of our estimator with those of existing alternatives, highlighting the advantages of our approach.

Semiparametric estimation of binary response models with endogenous regressors

Urheber*in: Rothe, Christoph

Free access - no reuse

0
/
0

Extent
Seite(n): 51-64
Language
Englisch
Notes
Status: Postprint; begutachtet (peer reviewed)

Bibliographic citation
Journal of Econometrics, 153(1)

Classification
Semiparametric and Nonparametric Methods: General
Subject
Wirtschaft
Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik

Event
Geistige Schöpfung
(who)
Rothe, Christoph
Event
Veröffentlichung
(where)
Niederlande
(when)
2009

DOI
URN
urn:nbn:de:0168-ssoar-248602
Rights
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
Last update
21.06.2024, 4:26 PM CEST

Data provider

This object is provided by:
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. If you have any questions about the object, please contact the data provider.

Object type

  • Zeitschriftenartikel

Associated

  • Rothe, Christoph

Time of origin

  • 2009

Other Objects (12)