Arbeitspapier
The Generalized Receiver Operating Characteristic Curve
The problem is to predict whether a random outcome is a "success" (R=1) or a "failure" (R=0) given a continuous variable Z. The performance of a prediction rule $D=D(Z)\in \{1,0\}$ boils down to two probabilities, beta =Pr (D=1|R=1) and alpha =Pr (D=1|R=0). We wish beta is high, alpha is low. Given a set of rules D such that any d in D is attributed to a specific alpha, I define the "generalized" receiver operating characteristic (GROC) curve as a function that returns beta for any alpha in (0,1]. The GROC curve associated with D ={d(Z)=I(Z>c),c in R} is the "conventional" ROC curve, while an "efficient" ROC (EROC) curve derives from rules that return the largest possible beta for any alpha in (0,1]. I present estimation theory for the GROC curve and develop procedures for estimating the efficient rules and the associated EROC curve under semiparametric and nonparametric conditions.
- Sprache
-
Englisch
- Erschienen in
-
Series: Discussion paper ; No. 114
- Klassifikation
-
Wirtschaft
- Thema
-
classification problem
receiver operating characteristic (ROC) curve
likelihood ratio rule
semi-parametric estimation
non-parametric estimation
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Kauppi, Heikki
- Ereignis
-
Veröffentlichung
- (wer)
-
Aboa Centre for Economics (ACE)
- (wo)
-
Turku
- (wann)
-
2016
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Kauppi, Heikki
- Aboa Centre for Economics (ACE)
Entstanden
- 2016