Optimal machine learning methods for prediction of high-flow nasal cannula outcomes using image features from electrical impedance tomography

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
In: Computer Methods and Programs in Biomedicine 238.2023, August, 107613

Event
Veröffentlichung
(where)
Furtwangen
(who)
Hochschule Furtwangen
(when)
2023
Creator
Yang, Lin
Li, Zhe
Dai, Meng
Fu, Feng
Möller, Knut
Gao, Yuan
Zhao, Zhanqi

DOI
10.1016/j.cmpb.2023.107613
URN
urn:nbn:de:bsz:fn1-opus4-101782
Rights
Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:27 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Yang, Lin
  • Li, Zhe
  • Dai, Meng
  • Fu, Feng
  • Möller, Knut
  • Gao, Yuan
  • Zhao, Zhanqi
  • Hochschule Furtwangen

Time of origin

  • 2023

Other Objects (12)