Embeddings between Triebel-Lizorkin Spaces on Metric Spaces Associated with Operators
Abstract: We consider the general framework of a metric measure space satisfying the doubling volume property, associated with a non-negative self-adjoint operator, whose heat kernel enjoys standard Gaussian localization. We prove embedding theorems between Triebel-Lizorkin spaces associated with operators. Embeddings for non-classical Triebel-Lizorkin and (both classical and non-classical) Besov spaces are proved as well. Our result generalize the Euclidean case and are new for many settings of independent interest such as the ball, the interval and Riemannian manifolds.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Embeddings between Triebel-Lizorkin Spaces on Metric Spaces Associated with Operators ; volume:8 ; number:1 ; year:2020 ; pages:418-429 ; extent:12
Analysis and geometry in metric spaces ; 8, Heft 1 (2020), 418-429 (gesamt 12)
- Creator
-
Georgiadis, Athanasios G.
Kyriazis, George
- DOI
-
10.1515/agms-2020-0120
- URN
-
urn:nbn:de:101:1-2024041116385410280149
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:55 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Georgiadis, Athanasios G.
- Kyriazis, George