Embeddings between Triebel-Lizorkin Spaces on Metric Spaces Associated with Operators

Abstract: We consider the general framework of a metric measure space satisfying the doubling volume property, associated with a non-negative self-adjoint operator, whose heat kernel enjoys standard Gaussian localization. We prove embedding theorems between Triebel-Lizorkin spaces associated with operators. Embeddings for non-classical Triebel-Lizorkin and (both classical and non-classical) Besov spaces are proved as well. Our result generalize the Euclidean case and are new for many settings of independent interest such as the ball, the interval and Riemannian manifolds.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Embeddings between Triebel-Lizorkin Spaces on Metric Spaces Associated with Operators ; volume:8 ; number:1 ; year:2020 ; pages:418-429 ; extent:12
Analysis and geometry in metric spaces ; 8, Heft 1 (2020), 418-429 (gesamt 12)

Creator
Georgiadis, Athanasios G.
Kyriazis, George

DOI
10.1515/agms-2020-0120
URN
urn:nbn:de:101:1-2024041116385410280149
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:55 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Georgiadis, Athanasios G.
  • Kyriazis, George

Other Objects (12)