Self‐Certifying Classification by Linearized Deep Assignment

Abstract: We propose a novel class of deep stochastic predictors for classifying metric data on graphs within the PAC‐Bayes risk certification paradigm. Classifiers are realized as linearly parametrized deep assignment flows with random initial conditions. Building on the recent PAC‐Bayes literature and data‐dependent priors, this approach enables (i) to use risk bounds as training objectives for learning posterior distributions on the hypothesis space and (ii) to compute tight out‐of‐sample risk certificates of randomized classifiers more efficiently than related work. Comparison with empirical test set errors illustrates the performance and practicality of this self‐certifying classification method.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Self‐Certifying Classification by Linearized Deep Assignment ; volume:23 ; number:1 ; year:2023 ; extent:6
Proceedings in applied mathematics and mechanics ; 23, Heft 1 (2023) (gesamt 6)

Urheber

DOI
10.1002/pamm.202200169
URN
urn:nbn:de:101:1-2023060115141258953453
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:52 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)