Arbeitspapier

Simultaneous probability statements for Bayesian P-splines

P-splines are a popular approach for fitting nonlinear effects of continuous covariates in semiparametric regression models. Recently, a Bayesian version for P-splines has been developed on the basis of Markov chain Monte Carlo simulation techniques for inference. In this work we adopt and generalize the concept of Bayesian contour probabilities to Bayesian P-splines within a generalized additive models framework. More specifically, we aim at computing the maximum credible level (sometimes called Bayesian p-value) for which a particular parameter vector of interest lies within the corresponding highest posterior density (HPD) region. We are particularly interested in parameter vectors that correspond to a constant, linear or more generally a polynomial fit. As an alternative to HPD regions simultaneous credible intervals could be used to define pseudo contour probabilities. Efficient algorithms for computing contour and pseudo contour probabilities are developed. The performance of the approach is assessed through simulation studies and applications to data for the Munich rental guide and on undernutrition in Zambia and Tanzania.

Sprache
Englisch

Erschienen in
Series: Discussion Paper ; No. 437

Thema
Schätztheorie
Bayes-Statistik

Ereignis
Geistige Schöpfung
(wer)
Brezger, Andreas
Lang, Stefan
Ereignis
Veröffentlichung
(wer)
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen
(wo)
München
(wann)
2005

DOI
doi:10.5282/ubm/epub.1806
Handle
URN
urn:nbn:de:bvb:19-epub-1806-2
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Brezger, Andreas
  • Lang, Stefan
  • Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen

Entstanden

  • 2005

Ähnliche Objekte (12)