Arbeitspapier
Merging of opinions under uncertainty
We consider long-run behavior of agents assessing risk in terms of dynamic convex risk measures or, equivalently, utility in terms of dynamic variational preferences in an uncertain setting. By virtue of a robust representation, we show that all uncertainty is revealed in the limit and agents behave as expected utility maximizer under the true underlying distribution regardless of their initial risk anticipation. In particular, risk assessments of distinct agents converge. This result is a generalization of the fundamental Blackwell-Dubins Theorem, cp. [Blackwell & Dubins, 62], to convex risk. We furthermore show the result to hold in a non-time-consistent environment.
- Language
-
Englisch
- Bibliographic citation
-
Series: Working Papers ; No. 433
- Classification
-
Wirtschaft
Optimization Techniques; Programming Models; Dynamic Analysis
Miscellaneous Mathematical Tools
Criteria for Decision-Making under Risk and Uncertainty
- Subject
-
Dynamic Convex Risk Measures
Multiple Priors
Uncertainty
Robust Representation
Time-Consistency
Blackwell-Dubins
Risikopräferenz
Erwartungstheorie
Entscheidung bei Unsicherheit
Zeitkonsistenz
Erwartungsnutzen
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Bier, Monika
Engelage, Daniel
- Event
-
Veröffentlichung
- (who)
-
Bielefeld University, Institute of Mathematical Economics (IMW)
- (where)
-
Bielefeld
- (when)
-
2010
- Handle
- URN
-
urn:nbn:de:hbz:361-17044
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Bier, Monika
- Engelage, Daniel
- Bielefeld University, Institute of Mathematical Economics (IMW)
Time of origin
- 2010