Arbeitspapier

Merging of opinions under uncertainty

We consider long-run behavior of agents assessing risk in terms of dynamic convex risk measures or, equivalently, utility in terms of dynamic variational preferences in an uncertain setting. By virtue of a robust representation, we show that all uncertainty is revealed in the limit and agents behave as expected utility maximizer under the true underlying distribution regardless of their initial risk anticipation. In particular, risk assessments of distinct agents converge. This result is a generalization of the fundamental Blackwell-Dubins Theorem, cp. [Blackwell & Dubins, 62], to convex risk. We furthermore show the result to hold in a non-time-consistent environment.

Language
Englisch

Bibliographic citation
Series: Working Papers ; No. 433

Classification
Wirtschaft
Optimization Techniques; Programming Models; Dynamic Analysis
Miscellaneous Mathematical Tools
Criteria for Decision-Making under Risk and Uncertainty
Subject
Dynamic Convex Risk Measures
Multiple Priors
Uncertainty
Robust Representation
Time-Consistency
Blackwell-Dubins
Risikopräferenz
Erwartungstheorie
Entscheidung bei Unsicherheit
Zeitkonsistenz
Erwartungsnutzen
Theorie

Event
Geistige Schöpfung
(who)
Bier, Monika
Engelage, Daniel
Event
Veröffentlichung
(who)
Bielefeld University, Institute of Mathematical Economics (IMW)
(where)
Bielefeld
(when)
2010

Handle
URN
urn:nbn:de:hbz:361-17044
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Bier, Monika
  • Engelage, Daniel
  • Bielefeld University, Institute of Mathematical Economics (IMW)

Time of origin

  • 2010

Other Objects (12)