Weak Capacity and Modulus Comparability in Ahlfors Regular Metric Spaces
Abstract: Let (Z, d, μ) be a compact, connected, Ahlfors Q-regular metric space with Q > 1. Using a hyperbolic filling of Z,we define the notions of the p-capacity between certain subsets of Z and of theweak covering p-capacity of path families Γ in Z.We show comparability results and quasisymmetric invariance.As an application of our methodswe deduce a result due to Tyson on the geometric quasiconformality of quasisymmetric maps between compact, connected Ahlfors Q-regular metric spaces.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Weak Capacity and Modulus Comparability in Ahlfors Regular Metric Spaces ; volume:4 ; number:1 ; year:2016 ; extent:26
Analysis and geometry in metric spaces ; 4, Heft 1 (2016) (gesamt 26)
- Creator
-
Lindquist, Jeff
- DOI
-
10.1515/agms-2016-0019
- URN
-
urn:nbn:de:101:1-2024041116313568662060
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:51 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Lindquist, Jeff