Mathematisches Modell

Kubische Ellipse auf einem elliptischen Zylinder

Kurzbeschreibung: Die Raumkurven dritter Ordnung (kubische Raumkurven) können in vier Typen unterschieden werden, je nachdem wie sie die Fernebene schneiden. Die Gipsmodelle der Serie VI, Nr. 6 aus dem Katalog von Martin Schilling (1911) zeigen die vier Typen auf Zylindern zweiter Ordnung (quadratische Zylinder). Das Modell 6a trägt die kubische Ellipse auf einem elliptischen Zylinder. Die kubische Ellipse schneidet die Fernebene in einem reellen und zwei imaginären Punkten. Die Kurve hat eine Mantellinie des Zylinders als Asymptote, welche im Modell aber nicht hervorgehoben wurde.

Urheber*in: Klein; Schilling / Rechtewahrnehmung: Institut für Geometrie der Technischen Universität Dresden

Attribution - NonCommercial - ShareAlike 4.0 International

0
/
0

Alternative title
Cubic Ellipse on a Cubic Cylinder (Englischer Titel)
Location
Technische Universität Dresden, Institut für Geometrie
Collection
Mathematische Modelle, Technische Universität Dresden
Other number(s)
VI, 6a (Katalognummer)
Material/Technique
Gips

Classification
Algebraische Geometrie (Fachgebiet)
Subject (what)
Kurven 3. Ordnung

Event
Entwurf
(who)
Klein (Entwerfer)
Event
Herstellung
(who)
Schilling (Hersteller)
(when)
1880

Last update
25.03.2025, 11:48 AM CET

Data provider

This object is provided by:
Institut für Geometrie der Technischen Universität Dresden. If you have any questions about the object, please contact the data provider.

Object type

  • Mathematisches Modell

Associated

  • Klein (Entwerfer)
  • Schilling (Hersteller)

Time of origin

  • 1880

Other Objects (12)