W‐schemes in spectral methods for reaction‐diffusion equations

Abstract: We consider reaction‐diffusion equations, which are parabolic systems of partial differential equations. Assuming periodic boundary conditions in space, a multidimensional Fourier transform can be used. A spectral method yields an initial value problem of a stiff system of ordinary differential equations for time‐dependent Fourier coefficients. We investigate the application of Rosenbrock‐Wanner W‐schemes in the time integration of the ordinary differential equations including step size selection. Results of numerical computations are presented using a Turing system in two space dimensions.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
W‐schemes in spectral methods for reaction‐diffusion equations ; day:25 ; month:09 ; year:2024 ; extent:8
Proceedings in applied mathematics and mechanics ; (25.09.2024) (gesamt 8)

Creator
Pulch, Roland

DOI
10.1002/pamm.202400063
URN
urn:nbn:de:101:1-2409251444173.777074736994
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:24 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Pulch, Roland

Other Objects (12)