EMA‐GAN: A Generative Adversarial Network for Infrared and Visible Image Fusion with Multiscale Attention Network and Expectation Maximization Algorithm

The purpose of the infrared and visible image fusion is to generate a fused image with rich information. Although most fusion methods can achieve good performance, there are still shortcomings in extracting feature information from source images, which make it difficult to balance the thermal radiation region information and texture detail information in the fused image. To address the above issues, an expectation maximization (EM) learning framework based on adversarial generative networks (GAN) for infrared and visible image fusion is proposed. The EM algorithm (EMA) can obtain maximum likelihood estimation for problems with potential variables, which is helpful in solving the problem of lack of labels in infrared and visible image fusion. The axial‐corner attention mechanism is designed to capture long‐range semantic information and texture information of the visible image. The multifrequency attention mechanism digs the relationships between features at different scales to highlight target information of infrared images in the fused result. Meanwhile, two discriminators are used to balance two different features, and a new loss function is designed to maximize the likelihood estimate of the data with soft class label assignments, which is obtained from the expectation network. Extensive experiments demonstrate the superiority of EMA‐GAN over the state‐of‐the‐art.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
EMA‐GAN: A Generative Adversarial Network for Infrared and Visible Image Fusion with Multiscale Attention Network and Expectation Maximization Algorithm ; day:29 ; month:08 ; year:2023 ; extent:17
Advanced intelligent systems ; (29.08.2023) (gesamt 17)

Urheber
Xi, Xiuliang
Jin, Xin
Jiang, Qian
Lin, Yu
Zhou, Wei
Guo, Lei

DOI
10.1002/aisy.202300310
URN
urn:nbn:de:101:1-2023083015065957736230
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:53 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Xi, Xiuliang
  • Jin, Xin
  • Jiang, Qian
  • Lin, Yu
  • Zhou, Wei
  • Guo, Lei

Ähnliche Objekte (12)