Artikel

A high-dimensionality-trait-driven learning paradigm for high dimensional credit classification

To solve the high-dimensionality issue and improve its accuracy in credit risk assessment, a high-dimensionality-trait-driven learning paradigm is proposed for feature extraction and classifier selection. The proposed paradigm consists of three main stages: categorization of high dimensional data, high-dimensionality-trait-driven feature extraction, and high-dimensionality-trait-driven classifier selection. In the first stage, according to the definition of high-dimensionality and the relationship between sample size and feature dimensions, the high-dimensionality traits of credit dataset are further categorized into two types: 100 < feature dimensions < sample size, and feature dimensions ≥ sample size. In the second stage, some typical feature extraction methods are tested regarding the two categories of high dimensionality. In the final stage, four types of classifiers are performed to evaluate credit risk considering different high-dimensionality traits. For the purpose of illustration and verification, credit classification experiments are performed on two publicly available credit risk datasets, and the results show that the proposed high-dimensionality-trait-driven learning paradigm for feature extraction and classifier selection is effective in handling high-dimensional credit classification issues and improving credit classification accuracy relative to the benchmark models listed in this study.

Sprache
Englisch

Erschienen in
Journal: Financial Innovation ; ISSN: 2199-4730 ; Volume: 7 ; Year: 2021 ; Issue: 1 ; Pages: 1-20 ; Heidelberg: Springer

Klassifikation
Management
Thema
Classifier selection
Credit risk classification
Feature extraction
High dimensionality
Trait-driven learning paradigm

Ereignis
Geistige Schöpfung
(wer)
Yu, Lean
Yu, Lihang
Yu, Kaitao
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Heidelberg
(wann)
2021

DOI
doi:10.1186/s40854-021-00249-x
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Yu, Lean
  • Yu, Lihang
  • Yu, Kaitao
  • Springer

Entstanden

  • 2021

Ähnliche Objekte (12)