A classification method for binary predictors combining similarity measures and mixture models

Abstract: In this paper, a new supervised classification method dedicated to binary predictors is proposed. Its originality is to combine a model-based classification rule with similarity measures thanks to the introduction of new family of exponential kernels. Some links are established between existing similarity measures when applied to binary predictors. A new family of measures is also introduced to unify some of the existing literature. The performance of the new classification method is illustrated on two real datasets (verbal autopsy data and handwritten digit data) using 76 similarity measures.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
A classification method for binary predictors combining similarity measures and mixture models ; volume:3 ; number:1 ; year:2015 ; extent:16
Dependence modeling ; 3, Heft 1 (2015) (gesamt 16)

Urheber
Sylla, Seydou N.
Girard, Stéphane
Diongue, Abdou Ka
Diallo, Aldiouma
Sokhna, Cheikh

DOI
10.1515/demo-2015-0017
URN
urn:nbn:de:101:1-2411181548461.729751570890
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:34 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Sylla, Seydou N.
  • Girard, Stéphane
  • Diongue, Abdou Ka
  • Diallo, Aldiouma
  • Sokhna, Cheikh

Ähnliche Objekte (12)