Artikel
Interpolation and shock persistence of prewar U.S. macroeconomic time series: A reconsideration
The U.S. prewar output series exhibit smaller shock-persistence than postwar-series. Some studies suggest that this may be due to linear interpolation used to generate missing prewar data. Monte Carlo simulations that support this view generate large standard-errors, making such inference imprecise. We assess analytically the effect of linear interpolation on a nonstationary process. We find that interpolation indeed reduces shock-persistence, but the interpolated series can still exhibit greater shock-persistence than a pure random walk. Moreover, linear interpolation makes the series periodically nonstationary, with parameters of the data generating process and the length of the interpolation time-segments affecting shock-persistence in conflicting ways.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Economics Letters ; ISSN: 0165-1765 ; Volume: 213 ; Year: 2022 ; Amsterdam: Elsevier
- Klassifikation
-
Wirtschaft
Econometrics
Mathematical Methods
Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
Prices, Business Fluctuations, and Cycles: General (includes Measurement and Data)
Economic History: Macroeconomics and Monetary Economics; Industrial Structure; Growth; Fluctuations: General, International, or Comparative
- Thema
-
Linear Interpolation
Random Walk
Shock Persistence
Nonstationary Time Series
Periodic Nonstationarity
Stationary Time Series
Prewar US Time Series
Prewar vs Postwar Business Cycles
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Dezhbakhsh, Hashem
Levy, Daniel
- Ereignis
-
Veröffentlichung
- (wer)
-
Elsevier
ZBW - Leibniz Information Centre for Economics
- (wo)
-
Amsterdam
- (wann)
-
2022
- DOI
-
doi:10.1016/j.econlet.2022.110386
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Dezhbakhsh, Hashem
- Levy, Daniel
- Elsevier
- ZBW - Leibniz Information Centre for Economics
Entstanden
- 2022