Control scheme selection in human-machine- interfaces by analysis of activity signals
Abstract: Human-Machine Interfaces in rehabilitation engineering often use activity signals. Examples are electrical wheelchairs or prostheses controlled by means of muscle contractions. Activity signals are user-dependent and often reflect neurological weaknesses. Thus, not all users are able to operate the same control scheme in a robust manner. To avoid under- and overstraining, the interface ideally uses a control scheme which reflects the user’s control ability best. Therefore, we explored typical phenomena of activation signals. We derive criteria to quantify the user’s performance and abilities and present a routine which automatically selects and adapts one of three control schemes being best suited.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Control scheme selection in human-machine- interfaces by analysis of activity signals ; volume:2 ; number:1 ; year:2016 ; pages:707-710 ; extent:4
Current directions in biomedical engineering ; 2, Heft 1 (2016), 707-710 (gesamt 4)
- Urheber
- DOI
-
10.1515/cdbme-2016-0153
- URN
-
urn:nbn:de:101:1-2410141656141.867916187117
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:21 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Doneit, Wolfgang
- Mikut, Ralf
- Liebetanz, David
- Rupp, Rüdiger
- Reischl, Markus