Predicting cellular responses to complex perturbations in high‐throughput screens

Abstract: Recent advances in multiplexed single‐cell transcriptomics experiments facilitate the high‐throughput study of drug and genetic perturbations. However, an exhaustive exploration of the combinatorial perturbation space is experimentally unfeasible. Therefore, computational methods are needed to predict, interpret, and prioritize perturbations. Here, we present the compositional perturbation autoencoder (CPA), which combines the interpretability of linear models with the flexibility of deep‐learning approaches for single‐cell response modeling. CPA learns to in silico predict transcriptional perturbation response at the single‐cell level for unseen dosages, cell types, time points, and species. Using newly generated single‐cell drug combination data, we validate that CPA can predict unseen drug combinations while outperforming baseline models. Additionally, the architecture's modularity enables incorporating the chemical representation of the drugs, allowing the prediction of cellular response to completely unseen drugs. Furthermore, CPA is also applicable to genetic combinatorial screens. We demonstrate this by imputing in silico 5,329 missing combinations (97.6% of all possibilities) in a single‐cell Perturb‐seq experiment with diverse genetic interactions. We envision CPA will facilitate efficient experimental design and hypothesis generation by enabling in silico response prediction at the single‐cell level and thus accelerate therapeutic applications using single‐cell technologies.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Predicting cellular responses to complex perturbations in high‐throughput screens ; day:08 ; month:05 ; year:2023 ; extent:19
Molecular systems biology ; (08.05.2023) (gesamt 19)

Urheber
Lotfollahi, Mohammad
Susmelj, Anna
De Donno, Carlo
Hetzel, Leon
Ji, Yuge
Ibarra, Ignacio L.
Srivatsan, Sanjay R.
Naghipourfar, Mohsen
Daza, Riza M.
Martin, Beth
Shendure, Jay
McFaline‐Figueroa, Jose L.
Boyeau, Pierre
Wolf, F. Alexander
Yakubova, Nafissa
Günnemann, Stephan
Trapnell, Cole
Lopez‐Paz, David
Theis, Fabian J.

DOI
10.15252/msb.202211517
URN
urn:nbn:de:101:1-2023050815132909630222
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:50 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Lotfollahi, Mohammad
  • Susmelj, Anna
  • De Donno, Carlo
  • Hetzel, Leon
  • Ji, Yuge
  • Ibarra, Ignacio L.
  • Srivatsan, Sanjay R.
  • Naghipourfar, Mohsen
  • Daza, Riza M.
  • Martin, Beth
  • Shendure, Jay
  • McFaline‐Figueroa, Jose L.
  • Boyeau, Pierre
  • Wolf, F. Alexander
  • Yakubova, Nafissa
  • Günnemann, Stephan
  • Trapnell, Cole
  • Lopez‐Paz, David
  • Theis, Fabian J.

Ähnliche Objekte (12)