Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations

Abstract: Hydrogels are widely used in flexible aqueous batteries due to their liquid‐like ion transportation abilities and solid‐like mechanical properties. Their potential applications in flexible and wearable electronics introduce a fundamental challenge: how to lower the freezing point of hydrogels to preserve these merits without sacrificing hydrogels' basic advantages in low cost and high safety. Moreover, zinc as an ideal anode in aqueous batteries suffers from low reversibility because of the formation of insulative byproducts, which is mainly caused by hydrogen evolution via extensive hydration of zinc ions. This, in principle, requires the suppression of hydration, which induces an undesirable increase in the freezing point of hydrogels. Here, it is demonstrated that cooperatively hydrated cations, zinc and lithium ions in hydrogels, are very effective in addressing the above challenges. This simple but unique hydrogel not only enables a 98% capacity retention upon cooling down to −20 °C from room temperature but also allows a near 100% capacity retention with >99.5% Coulombic efficiency over 500 cycles at −20 °C. In addition, the strengthened mechanical properties of the hydrogel under subzero temperatures result in excellent durability under various harsh deformations after the freezing process.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations ; volume:30 ; number:6 ; year:2020 ; extent:10
Advanced functional materials ; 30, Heft 6 (2020) (gesamt 10)

Creator
Zhu, Minshen
Wang, Xiaojie
Tang, Hongmei
Wang, Jiawei
Hao, Qi
Liu, Lixiang
Li, Yang
Zhang, Kai
Schmidt, Oliver G.

DOI
10.1002/adfm.201907218
URN
urn:nbn:de:101:1-2022060913514489956250
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:35 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Zhu, Minshen
  • Wang, Xiaojie
  • Tang, Hongmei
  • Wang, Jiawei
  • Hao, Qi
  • Liu, Lixiang
  • Li, Yang
  • Zhang, Kai
  • Schmidt, Oliver G.

Other Objects (12)