Arbeitspapier

Identification of structural vector autoregressions through higher unconditional moments

This paper pursues two objectives. First, we determine the sufficient condition for local, statistical identification of SVAR processes through the third and fourth unconditional moments of the reduced-form innovations. Our findings provide novel insights when the entire system is not identified, as they highlight which subset of structural parameters is identified and which is not. Second, we elaborate a tractable testing procedure to verify whether the identification condition holds, prior to the estimation of the structural parameters of the SVAR process. To do so, we design a new bootstrap procedure that improves the small-sample properties of rank tests for the symmetry and kurtosis of the structural shocks.

Language
Englisch

Bibliographic citation
Series: Document de travail ; No. 2020-14

Classification
Wirtschaft
Hypothesis Testing: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Subject
Bootstrap procedure
excess kurtosis
identification condition
rank test
skewness
structural vector autoregression

Event
Geistige Schöpfung
(who)
Guay, Alain
Event
Veröffentlichung
(who)
Université du Québec à Montréal, École des sciences de la gestion (ESG UQAM), Département des sciences économiques
(where)
Montréal
(when)
2020

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Guay, Alain
  • Université du Québec à Montréal, École des sciences de la gestion (ESG UQAM), Département des sciences économiques

Time of origin

  • 2020

Other Objects (12)