Arbeitspapier

The Stability of Subdivision Operator

We consider the univariate two-scale refinement equation.The paper analyzes the correlation between the existence of smoothcompactly supported solutions of this equation and the convergence ofthe corresponding cascade algorithm/subdivision scheme. We introducea criterion that expresses this correlation in terms of mask of theequation. We show that the convergence of subdivision scheme dependson values that the mask takes at the points of its generalizedcycles. This means in particular that the stability of shifts ofrefinable function is not necessary for the convergence of thesubdivision process. This also leads to some results on the degree ofconvergence of subdivision processes and on factorizations ofrefinable functions.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 01-045/4

Classification
Wirtschaft
Subject
refinement equations
cascade algorithm
subdivision process
degree of convergence
stability
cycles
tree
Mathematik
Theorie

Event
Geistige Schöpfung
(who)
Protassov, Vladimir
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2001

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Protassov, Vladimir
  • Tinbergen Institute

Time of origin

  • 2001

Other Objects (12)