Arbeitspapier

Granger-causal-priority and choice of variables in vector autoregressions

A researcher is interested in a set of variables that he wants to model with a vector auto-regression and he has a dataset with more variables. Which variables from the dataset to include in the VAR, in addition to the variables of interest? This question arises in many applications of VARs, in prediction and impulse response analysis. We develop a Bayesian methodology to answer this question. We rely on the idea of Granger-causal-priority, related to the well-known concept of Granger-non-causality. The methodology is simple to use, because we provide closed-form expressions for the relevant posterior probabilities. Applying the methodology to the case when the variables of interest are output, the price level, and the short-term interest rate, we find remarkably similar results for the United States and the euro area.

Sprache
Englisch

Erschienen in
Series: ECB Working Paper ; No. 1600

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Evaluation, Validation, and Selection
Business Fluctuations; Cycles
Thema
Bayesian model choice
granger-causal-priority
granger-noncausality
structural vector autoregression
Vector autoregression
VAR-Modell
Kausalanalyse
Theorie

Ereignis
Geistige Schöpfung
(wer)
Jarociński, Marek
Maćkowiak, Bartosz
Ereignis
Veröffentlichung
(wer)
European Central Bank (ECB)
(wo)
Frankfurt a. M.
(wann)
2013

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Jarociński, Marek
  • Maćkowiak, Bartosz
  • European Central Bank (ECB)

Entstanden

  • 2013

Ähnliche Objekte (12)