Water Triggers Hydrogen‐Bond‐Network Reshaping in the Glycoaldehyde Dimer

Abstract: Carbohydrates are ubiquitous biomolecules in nature. The vast majority of their biomolecular activity takes place in aqueous environments. Molecular reactivity and functionality are, therefore, often strongly influenced by not only interactions with equivalent counterparts, but also with the surrounding water molecules. Glycoaldehyde (Gly) represents a prototypical system to identify the relevant interactions and the balance that governs them. Here we present a broadband rotational‐spectroscopy study on the stepwise hydration of the Gly dimer with up to three water molecules. We reveal the preferred hydrogen‐bond networks formed when water molecules sequentially bond to the sugar dimer. We observe that the dimer structure and the hydrogen‐bond networks at play remarkably change upon the addition of just a single water molecule to the dimer. Further addition of water molecules does not significantly alter the observed hydrogen‐bond topologies.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Water Triggers Hydrogen‐Bond‐Network Reshaping in the Glycoaldehyde Dimer ; volume:132 ; number:22 ; year:2020 ; pages:8479-8483 ; extent:5
Angewandte Chemie ; 132, Heft 22 (2020), 8479-8483 (gesamt 5)

Creator
Pérez, Cristóbal
Steber, Amanda L.
Temelso, Berhane
Kisiel, Zbigniew
Schnell, Melanie

DOI
10.1002/ange.201914888
URN
urn:nbn:de:101:1-2022052713363938126710
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:31 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Pérez, Cristóbal
  • Steber, Amanda L.
  • Temelso, Berhane
  • Kisiel, Zbigniew
  • Schnell, Melanie

Other Objects (12)