Ion channel classification through machine learning and protein language model embeddings
Abstract: Ion channels are critical membrane proteins that regulate ion flux across cellular membranes, influencing numerous biological functions. The resource-intensive nature of traditional wet lab experiments for ion channel identification has led to an increasing emphasis on computational techniques. This study extends our previous work on protein language models for ion channel prediction, significantly advancing the methodology and performance. We employ a comprehensive array of machine learning algorithms, including k-Nearest Neighbors, Random Forest, Support Vector Machines, and Feed-Forward Neural Networks, alongside a novel Convolutional Neural Network (CNN) approach. These methods leverage fine-tuned embeddings from ProtBERT, ProtBERT-BFD, and MembraneBERT to differentiate ion channels from non-ion channels. Our empirical findings demonstrate that TooT-BERT-CNN-C, which combines features from ProtBERT-BFD and a CNN, substantially surpasses existing benchmarks. On our original dataset, it achieves a Matthews Correlation Coefficient (MCC) of 0.8584 and an accuracy of 98.35 %. More impressively, on a newly curated, larger dataset (DS-Cv2), it attains an MCC of 0.9492 and an ROC AUC of 0.9968 on the independent test set. These results not only highlight the power of integrating protein language models with deep learning for ion channel classification but also underscore the importance of using up-to-date, comprehensive datasets in bioinformatics tasks. Our approach represents a significant advancement in computational methods for ion channel identification, with potential implications for accelerating research in ion channel biology and aiding drug discovery efforts.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Ion channel classification through machine learning and protein language model embeddings ; volume:21 ; number:4 ; year:2024 ; extent:18
Journal of integrative bioinformatics ; 21, Heft 4 (2024) (gesamt 18)
- Urheber
-
Ghazikhani, Hamed
Butler, Gregory
- DOI
-
10.1515/jib-2023-0047
- URN
-
urn:nbn:de:101:1-2501041711547.531398579125
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:23 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Ghazikhani, Hamed
- Butler, Gregory