Arbeitspapier
Classification-relevant Importance Measures for the West German Business Cycle
When analyzing business cycle data, one observes that the relevant predictor variables are often highly correlated. This paper presents a method to obtain measures of importance for the classification of data in which such multicollinearity is present. In systems with highly correlated variables it is interesting to know what changes are inflicted when a certain predictor is changed by one unit and all other predictors according to their correlation to the first instead of a ceteris paribus analysis. The approach described in this paper uses directional derivatives to obtain such importance measures. It is shown how the interesting directions can be estimated and different evaluation strategies for characteristics of classification models are presented. The method is then applied to linear discriminant analysis and multinomial logit for the classification of west German business cycle phases.
- Language
-
Englisch
- Bibliographic citation
-
Series: Technical Report ; No. 2005,37
- Subject
-
Konjunktur
Clusteranalyse
Konjunkturindikator
Theorie
Zeitreihenanalyse
Deutschland
- Event
-
Geistige Schöpfung
- (who)
-
Garczarek, Ursula
Weihs, Claus
Enache, Daniel
- Event
-
Veröffentlichung
- (who)
-
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
- (where)
-
Dortmund
- (when)
-
2005
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Garczarek, Ursula
- Weihs, Claus
- Enache, Daniel
- Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
Time of origin
- 2005