Artikel
CATE meets ML
For treatment effects—one of the core issues in modern econometric analysis—prediction and estimation are two sides of the same coin. As it turns out, machine learning methods are the tool for generalized prediction models. Combined with econometric theory, they allow us to estimate not only the average but a personalized treatment effect—the conditional average treatment effect (CATE). In this tutorial, we give an overview of novel methods, explain them in detail, and apply them via Quantlets in real data applications. We study the effect that microcredit availability has on the amount of money borrowed and if 401(k) pension plan eligibility has an impact on net financial assets, as two empirical examples. The presented toolbox of methods contains meta-learners, like the doubly-robust, R-, T- and X-learner, and methods that are specially designed to estimate the CATE like the causal BART and the generalized random forest. In both, the microcredit and 401(k) example, we find a positive treatment effect for all observations but conflicting evidence of treatment effect heterogeneity. An additional simulation study, where the true treatment effect is known, allows us to compare the different methods and to observe patterns and similarities.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Digital Finance ; ISSN: 2524-6186 ; Volume: 3 ; Year: 2021 ; Issue: 2 ; Pages: 99-148 ; Cham: Springer International Publishing
- Klassifikation
-
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Household Saving; Personal Finance
Banks; Depository Institutions; Micro Finance Institutions; Mortgages
- Thema
-
Causal inference
CATE
Machine learning
Tutorial
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Jacob, Daniel
- Ereignis
-
Veröffentlichung
- (wer)
-
Springer International Publishing
- (wo)
-
Cham
- (wann)
-
2021
- DOI
-
doi:10.1007/s42521-021-00033-7
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Jacob, Daniel
- Springer International Publishing
Entstanden
- 2021