Artikel

Combination of linear discriminant analysis and expert opinion for the construction of credit rating models: The case of SMEs

The construction of an internal rating model is the main task for the bank in the framework of the IRB-foundation approach the fact that it is necessary to determine the probability of default by rating class. As a result, several statistical approaches can be used, such as logistic regression and linear discriminant analysis to express the relationship between the default and the financial, managerial and organizational characteristics of the enterprise. In this paper, we will propose a new approach to combine the linear discriminant analysis and the expert opinion by using the Bayesian approach. Indeed, we will build a rating model based on linear discriminant analysis and we will use the bayesian logic to determine the posterior probability of default by rating class. The reliability of experts' estimates depends on the information collection process. As a result, we have defined an information collection approach that allows to reduce the imprecision of the estimates by using the Delphi method. The empirical study uses a portfolio of SMEs from a Moroccan bank. This permitted the construction of the statistical rating model and the associated Bayesian models; and to compare the capital requirement determined by these models.

Sprache
Englisch

Erschienen in
Journal: Cogent Business & Management ; ISSN: 2331-1975 ; Volume: 6 ; Year: 2019 ; Pages: 1-34 ; Abingdon: Taylor & Francis

Klassifikation
Management
Bayesian Analysis: General
Estimation: General
Model Construction and Estimation
Banks; Depository Institutions; Micro Finance Institutions; Mortgages
Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
Thema
linear discriminant analysis
Bayesian approach
Probability of default (PD)
IRB foundation
Unexpected loss (UL)

Ereignis
Geistige Schöpfung
(wer)
Habachi, Mohamed
Benbachir, Saâd
Ereignis
Veröffentlichung
(wer)
Taylor & Francis
(wo)
Abingdon
(wann)
2019

DOI
doi:10.1080/23311975.2019.1685926
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Habachi, Mohamed
  • Benbachir, Saâd
  • Taylor & Francis

Entstanden

  • 2019

Ähnliche Objekte (12)