Causal inference in AI education: A primer

Abstract: The study of causal inference has seen recent momentum in machine learning and artificial intelligence (AI), particularly in the domains of transfer learning, reinforcement learning, automated diagnostics, and explainability (among others). Yet, despite its increasing application to address many of the boundaries in modern AI, causal topics remain absent in most AI curricula. This work seeks to bridge this gap by providing classroom-ready introductions that integrate into traditional topics in AI, suggests intuitive graphical tools for the application to both new and traditional lessons in probabilistic and causal reasoning, and presents avenues for instructors to impress the merit of climbing the “causal hierarchy” to address problems at the levels of associational, interventional, and counterfactual inference. Finally, this study shares anecdotal instructor experiences, successes, and challenges integrating these lessons at multiple levels of education.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Causal inference in AI education: A primer ; volume:10 ; number:1 ; year:2022 ; pages:141-173 ; extent:33
Journal of causal inference ; 10, Heft 1 (2022), 141-173 (gesamt 33)

Urheber
Forney, Andrew
Mueller, Scott

DOI
10.1515/jci-2021-0048
URN
urn:nbn:de:101:1-2022071815192169552711
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:30 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Forney, Andrew
  • Mueller, Scott

Ähnliche Objekte (12)