Adaptive approximation of nonlinear eigenproblems by minimal rational interpolation

Abstract: We describe a strategy for solving nonlinear eigenproblems numerically. Our approach is based on the approximation of a vector‐valued function, defined as solution of a non‐homogeneous version of the eigenproblem. This approximation step is carried out via the minimal rational interpolation method. Notably, an adaptive sampling approach is employed: the expensive data needed for the approximation is gathered at locations that are optimally chosen by following a greedy error indicator. This allows the algorithm to employ computational resources only where where “most of the information” on not‐yet‐approximated eigenvalues can be found. Then, through a post‐processing of the surrogate, the sought‐after eigenvalues and eigenvectors are recovered. Numerical examples are used to showcase the effectiveness of the method.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Adaptive approximation of nonlinear eigenproblems by minimal rational interpolation ; volume:22 ; number:1 ; year:2023 ; extent:0
Proceedings in applied mathematics and mechanics ; 22, Heft 1 (2023) (gesamt 0)

Urheber
Pradovera, Davide

DOI
10.1002/pamm.202200032
URN
urn:nbn:de:101:1-2023032514083326825125
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:59 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Pradovera, Davide

Ähnliche Objekte (12)