Adaptive approximation of nonlinear eigenproblems by minimal rational interpolation
Abstract: We describe a strategy for solving nonlinear eigenproblems numerically. Our approach is based on the approximation of a vector‐valued function, defined as solution of a non‐homogeneous version of the eigenproblem. This approximation step is carried out via the minimal rational interpolation method. Notably, an adaptive sampling approach is employed: the expensive data needed for the approximation is gathered at locations that are optimally chosen by following a greedy error indicator. This allows the algorithm to employ computational resources only where where “most of the information” on not‐yet‐approximated eigenvalues can be found. Then, through a post‐processing of the surrogate, the sought‐after eigenvalues and eigenvectors are recovered. Numerical examples are used to showcase the effectiveness of the method.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Adaptive approximation of nonlinear eigenproblems by minimal rational interpolation ; volume:22 ; number:1 ; year:2023 ; extent:0
Proceedings in applied mathematics and mechanics ; 22, Heft 1 (2023) (gesamt 0)
- Urheber
-
Pradovera, Davide
- DOI
-
10.1002/pamm.202200032
- URN
-
urn:nbn:de:101:1-2023032514083326825125
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:59 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Pradovera, Davide