Artikel

Asymptotic versus bootstrap inference for inequality indices of the cumulative distribution function

We examine the performance of asymptotic inference as well as bootstrap tests for the Alphabeta and Kobus-Mi±o´s family of inequality indices for ordered response data. We use Monte Carlo experiments to compare the empirical size and statistical power of asymptotic inference and the Studentized bootstrap test. In a broad variety of settings, both tests are found to have similar rejection probabilities of true null hypotheses, and similar power. Nonetheless, the asymptotic test remains correctly sized in the presence of certain types of severe class imbalances exhibiting very low or very high levels of inequality, whereas the bootstrap test becomes somewhat oversized in these extreme settings.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 8 ; Year: 2020 ; Issue: 1 ; Pages: 1-15 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
large sample distributions
measurement of inequality
monte carlo experiments
multinomial sampling
ordered response data
Studentized bootstrap tests

Ereignis
Geistige Schöpfung
(wer)
Abul Naga, Ramses H.
Stapenhurst, Christopher
Yalonetzky, Gastón
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2020

DOI
doi:10.3390/econometrics8010008
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Abul Naga, Ramses H.
  • Stapenhurst, Christopher
  • Yalonetzky, Gastón
  • MDPI

Entstanden

  • 2020

Ähnliche Objekte (12)