Arbeitspapier

The default risk of firms examined with Smooth Support Vector Machines;

In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. The tool must be precise but also easily adaptable to the bank's objections regarding the relation of false acceptances (Type I error) and false rejections (Type II error). We explore the suitability of Smooth Support Vector Machines (SSVM), and investigate how important factors such as selection of appropriate accounting ratios (predictors), length of training period and structure of the training sample influence the precision of prediction. Furthermore we showthat oversampling can be employed to gear the tradeoff between error types. Finally, we illustrate graphically how different variants of SSVM can be used jointly to support the decision task of loan officers.

Sprache
Englisch

Erschienen in
Series: DIW Discussion Papers ; No. 757

Klassifikation
Wirtschaft
Corporate Finance and Governance: General
Semiparametric and Nonparametric Methods: General
Bankruptcy; Liquidation
Neural Networks and Related Topics
Thema
Insolvency Prognosis
SVMs
Statistical Learning Theory
Non-parametric Classfication
Kreditwürdigkeit
Prognoseverfahren
Support Vector Machine
Theorie

Ereignis
Geistige Schöpfung
(wer)
Härdle, Wolfgang Karl
Lee, Yuh-Jye
Schäfer, Dorothea
Yeh, Yi-Ren
Ereignis
Veröffentlichung
(wer)
Deutsches Institut für Wirtschaftsforschung (DIW)
(wo)
Berlin
(wann)
2007

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Härdle, Wolfgang Karl
  • Lee, Yuh-Jye
  • Schäfer, Dorothea
  • Yeh, Yi-Ren
  • Deutsches Institut für Wirtschaftsforschung (DIW)

Entstanden

  • 2007

Ähnliche Objekte (12)