Arbeitspapier

Estimating probabilities of default with support vector machines

This paper proposes a rating methodology that is based on a non-linear classification method, the support vector machine, and a non-parametric technique for mapping rating scores into probabilities of default. We give an introduction to underlying statistical models and represent the results of testing our approach on Deutsche Bundesbank data. In particular we discuss the selection of variables and give a comparison with more traditional approaches such as discriminant analysis and the logit regression. The results demonstrate that the SVM has clear advantages over these methods for all variables tested.

Language
Englisch

Bibliographic citation
Series: Discussion Paper Series 2 ; No. 2007,18

Classification
Wirtschaft
Neural Networks and Related Topics
Bankruptcy; Liquidation
Semiparametric and Nonparametric Methods: General
Subject
Bankruptcy
Company rating
Default probability
Support vector machines
Kreditwürdigkeit
Konkurs
Prognoseverfahren
Support Vector Machine
Theorie
Deutschland

Event
Geistige Schöpfung
(who)
Härdle, Wolfgang Karl
Moro, Rouslan A.
Schäfer, Dorothea
Event
Veröffentlichung
(who)
Deutsche Bundesbank
(where)
Frankfurt a. M.
(when)
2007

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Härdle, Wolfgang Karl
  • Moro, Rouslan A.
  • Schäfer, Dorothea
  • Deutsche Bundesbank

Time of origin

  • 2007

Other Objects (12)