Arbeitspapier

Estimating probabilities of default with support vector machines

This paper proposes a rating methodology that is based on a non-linear classification method, the support vector machine, and a non-parametric technique for mapping rating scores into probabilities of default. We give an introduction to underlying statistical models and represent the results of testing our approach on Deutsche Bundesbank data. In particular we discuss the selection of variables and give a comparison with more traditional approaches such as discriminant analysis and the logit regression. The results demonstrate that the SVM has clear advantages over these methods for all variables tested.

Sprache
Englisch

Erschienen in
Series: Discussion Paper Series 2 ; No. 2007,18

Klassifikation
Wirtschaft
Neural Networks and Related Topics
Bankruptcy; Liquidation
Semiparametric and Nonparametric Methods: General
Thema
Bankruptcy
Company rating
Default probability
Support vector machines
Kreditwürdigkeit
Konkurs
Prognoseverfahren
Support Vector Machine
Theorie
Deutschland

Ereignis
Geistige Schöpfung
(wer)
Härdle, Wolfgang Karl
Moro, Rouslan A.
Schäfer, Dorothea
Ereignis
Veröffentlichung
(wer)
Deutsche Bundesbank
(wo)
Frankfurt a. M.
(wann)
2007

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Härdle, Wolfgang Karl
  • Moro, Rouslan A.
  • Schäfer, Dorothea
  • Deutsche Bundesbank

Entstanden

  • 2007

Ähnliche Objekte (12)