Disentangling molecular mechanisms regulating sensitization of interferon alpha signal transduction

Abstract: Tightly interlinked feedback regulators control the dynamics of intracellular responses elicited by the activation of signal transduction pathways. Interferon alpha (IFNα) orchestrates antiviral responses in hepatocytes, yet mechanisms that define pathway sensitization in response to prestimulation with different IFNα doses remained unresolved. We establish, based on quantitative measurements obtained for the hepatoma cell line Huh7.5, an ordinary differential equation model for IFNα signal transduction that comprises the feedback regulators STAT1, STAT2, IRF9, USP18, SOCS1, SOCS3, and IRF2. The model‐based analysis shows that, mediated by the signaling proteins STAT2 and IRF9, prestimulation with a low IFNα dose hypersensitizes the pathway. In contrast, prestimulation with a high dose of IFNα leads to a dose‐dependent desensitization, mediated by the negative regulators USP18 and SOCS1 that act at the receptor. The analysis of basal protein abundance in primary human hepatocytes reveals high heterogeneity in patient‐specific amounts of STAT1, STAT2, IRF9, and USP18. The mathematical modeling approach shows that the basal amount of USP18 determines patient‐specific pathway desensitization, while the abundance of STAT2 predicts the patient‐specific IFNα signal response

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Molecular systems biology. - 16, 7 (2020) , e8955, ISSN: 1744-4292

Keyword
Interferon
Behandlung
Signaltransduktion
Individualisierte Medizin

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2020

DOI
10.15252/msb.20198955
URN
urn:nbn:de:bsz:25-freidok-1667157
Rights
Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:47 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Time of origin

  • 2020

Other Objects (12)