Arbeitspapier

Dissecting models' forecasting performance

In this paper we suggest an approach to comparison of models' forecasting performance in unstable environments. Our approach is based on combination of the Cumulated Sum of Squared Forecast Error Differential (CSSFED) suggested earlier in Welch and Goyal (2008) and the Bayesian change point analysis based on Barry and Hartigan (1993). The latter methodology provides the formal statistical analysis of the CSSFED time series which turned out to be a powerful graphical tool for tracking how the relative forecasting performance of competing models evolves over time. We illustrate the suggested approach by using forecasts of the GDP growth rate in Switzerland.

Sprache
Englisch

Erschienen in
Series: KOF Working Papers ; No. 397

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Forecasting Models; Simulation Methods
Thema
Forecasting
Forecast Evaluation
Change Point Detection
Bayesian Estimation

Ereignis
Geistige Schöpfung
(wer)
Siliverstovs, Boriss
Ereignis
Veröffentlichung
(wer)
ETH Zurich, KOF Swiss Economic Institute
(wo)
Zurich
(wann)
2015

DOI
doi:10.3929/ethz-a-010692101
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Siliverstovs, Boriss
  • ETH Zurich, KOF Swiss Economic Institute

Entstanden

  • 2015

Ähnliche Objekte (12)