Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces
Abstract: We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π: X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces ; volume:1 ; number:2013 ; year:2013 ; pages:232-254
Analysis and geometry in metric spaces ; 1, Heft 2013 (2013), 232-254
- Creator
-
Balogh, Zoltán M.
Tyson, Jeremy T.
Wildrick, Kevin
- DOI
-
10.2478/agms-2013-0005
- URN
-
urn:nbn:de:101:1-2024041116413525410258
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:51 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Balogh, Zoltán M.
- Tyson, Jeremy T.
- Wildrick, Kevin