Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces

Abstract: We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π: X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces ; volume:1 ; number:2013 ; year:2013 ; pages:232-254
Analysis and geometry in metric spaces ; 1, Heft 2013 (2013), 232-254

Urheber
Balogh, Zoltán M.
Tyson, Jeremy T.
Wildrick, Kevin

DOI
10.2478/agms-2013-0005
URN
urn:nbn:de:101:1-2024041116413525410258
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:51 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Balogh, Zoltán M.
  • Tyson, Jeremy T.
  • Wildrick, Kevin

Ähnliche Objekte (12)