An Eulerian time‐stepping scheme for a coupled parabolic moving domain problem using equal‐order unfitted finite elements

Abstract: We consider an unfitted Eulerian time‐stepping scheme for a coupled parabolic model problem on a moving domain. In this model, the domain motion results from an ordinary differential equation coupled to the bulk via the forces acting on the moving interface. We extend our initial work (von Wahl & Richter, 2022) to allow for equal‐order finite element discretisations for the partial differential equation and Lagrange multiplier spaces. Together with the BFD2 time‐stepping scheme, the lowest‐order case of this equal‐order method then results in a fully balanced second‐order scheme in space and time. We show that the equal‐order method has the same stability properties as the method in our initial work. Numerical results validate this observation.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
An Eulerian time‐stepping scheme for a coupled parabolic moving domain problem using equal‐order unfitted finite elements ; volume:22 ; number:1 ; year:2023 ; extent:0
Proceedings in applied mathematics and mechanics ; 22, Heft 1 (2023) (gesamt 0)

Creator
Wahl, Henry von
Richter, Thomas

DOI
10.1002/pamm.202200003
URN
urn:nbn:de:101:1-2023032514185764892343
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:52 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)