Arbeitspapier
Reverse Bayesianism: Revising Beliefs in Light of Unforeseen Events
Bayesian Updating is the dominant theory of learning in economics. The theory is silent about how individuals react to events that were previously unforeseeable or unforeseen. Recent theoretical literature has put forth axiomatic frameworks to analyze the unknown. In particular, we test if subjects update their beliefs in a way that is consistent “reverse Bayesian”, which ensures that the old information is used correctly after an unforeseen event materializes. We find that participants do not systematically deviate from reverse Bayesianism, but they do not seem to expect an unknown event when this is reasonably unforeseeable, in two pre-registered experiments that entail unforeseen events. We argue that participants deviate less from the reverse Bayesian updating than from the usual Bayesian updating. We provide further evidence on the moderators of belief updating.
- Sprache
-
Englisch
- Erschienen in
-
Series: CESifo Working Paper ; No. 8662
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Design of Experiments: Laboratory, Individual
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
Expectations; Speculations
- Thema
-
reverse Bayesianism
unforeseen
unawareness
Bayesian updating
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Becker, Christoph K.
Melkonyan, Tigran
Proto, Eugenio
Sofianos, Andis
Trautmann, Stefan T.
- Ereignis
-
Veröffentlichung
- (wer)
-
Center for Economic Studies and Ifo Institute (CESifo)
- (wo)
-
Munich
- (wann)
-
2020
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Becker, Christoph K.
- Melkonyan, Tigran
- Proto, Eugenio
- Sofianos, Andis
- Trautmann, Stefan T.
- Center for Economic Studies and Ifo Institute (CESifo)
Entstanden
- 2020