Arbeitspapier

Valuation ratios, surprises, uncertainty or sentiment: How does financial machine learning predict returns from earnings announcements?

We apply state-of-the-art financial machine learning to assess the return-predictive value of more than 45,000 earnings announcements on a majority of S&P1500 constituents. To represent the diverse information content of earnings announcements, we generate predictor variables based on various sources such as analyst forecasts, earnings press releases and analyst conference call transcripts. We sort announcements into decile portfolios based on the model's abnormal return prediction. In comparison to three benchmark models, we find that random forests yield superior abnormal returns which tend to increase with the forecast horizon for up to 60 days after the announcement. We subject the model's learning and out-of-sample performance to further analysis. First, we find larger abnormal returns for small-cap stocks and a delayed return drift for growth stocks. Second, while revenue and earnings surprises are the main predictors for the contemporary reaction, we find that a larger range of variables, mostly fundamental ratios and forecast errors, is used to predict post-announcement returns. Third, we analyze variable contributions and find the model to recover non-linear patterns of common capital markets effects such as the value premium. Leveraging the model's predictions in a zero-investment trading strategy yields annualized returns of 11.63 percent at a Sharpe ratio of 1.39 after transaction costs.

Sprache
Englisch

Erschienen in
Series: FAU Discussion Papers in Economics ; No. 04/2020

Klassifikation
Wirtschaft
Thema
Earnings announcements
Asset pricing
Machine learning
Natural languageprocessing

Ereignis
Geistige Schöpfung
(wer)
Schnaubelt, Matthias
Seifert, Oleg
Ereignis
Veröffentlichung
(wer)
Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Economics
(wo)
Nürnberg
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Schnaubelt, Matthias
  • Seifert, Oleg
  • Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Economics

Entstanden

  • 2020

Ähnliche Objekte (12)