Arbeitspapier

Implementing an approximate dynamic factor model to nowcast GDP using sensitivity analysis

Dynamic factor models based on Kalman Filter techniques are frequently used to nowcast GDP. This study deals with the selection of indicators for this practice. We propose a two-tiered mechanism which is shown in a case study to produce more accurate nowcasts than a benchmark stochastic process and a standard model including extreme bounds fragile indicators. Nowcasting accuracy nearly measures up to the one of real-time forecasts by an institution with an interest in high-quality nowcasts.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 152

Classification
Wirtschaft
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Forecasting Models; Simulation Methods
Subject
dynamic factor
Kalman Filter
extreme bounds analysis

Event
Geistige Schöpfung
(who)
Duarte, Pablo
Süßmuth, Bernd
Event
Veröffentlichung
(who)
Universität Leipzig, Wirtschaftswissenschaftliche Fakultät
(where)
Leipzig
(when)
2018

Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Duarte, Pablo
  • Süßmuth, Bernd
  • Universität Leipzig, Wirtschaftswissenschaftliche Fakultät

Time of origin

  • 2018

Other Objects (12)