Arbeitspapier

A dynamic factor model for nowcasting Canadian GDP growth

This paper estimates a dynamic factor model (DFM) for nowcasting Canadian gross domestic product. The model is estimated with a mix of soft and hard indicators, and it features a high share of international data. The model is then used to generate nowcasts, predictions of the recent past and current state of the economy. In a pseudo real-time setting, we show that the DFM outperforms univariate benchmarks as well as other commonly used nowcasting models, such as mixed-data sampling (MIDAS) and bridge regressions.

Sprache
Englisch

Erschienen in
Series: Bank of Canada Staff Working Paper ; No. 2017-2

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Thema
Econometric and statistical methods
Business fluctuations and cycles

Ereignis
Geistige Schöpfung
(wer)
Chernis, Tony
Sekkel, Rodrigo
Ereignis
Veröffentlichung
(wer)
Bank of Canada
(wo)
Ottawa
(wann)
2017

DOI
doi:10.34989/swp-2017-2
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chernis, Tony
  • Sekkel, Rodrigo
  • Bank of Canada

Entstanden

  • 2017

Ähnliche Objekte (12)