Calcium-permeable AMPA receptors govern PV neuron feature selectivity

Abstract: The brain helps us survive by forming internal representations of the external world1,2. Excitatory cortical neurons are often precisely tuned to specific external stimuli3,4. However, inhibitory neurons, such as parvalbumin-positive (PV) interneurons, are generally less selective5. PV interneurons differ from excitatory neurons in their neurotransmitter receptor subtypes, including AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs)6,7. Excitatory neurons express calcium-impermeable AMPARs that contain the GluA2 subunit (encoded by GRIA2), whereas PV interneurons express receptors that lack the GluA2 subunit and are calcium-permeable (CP-AMPARs). Here we demonstrate a causal relationship between CP-AMPAR expression and the low feature selectivity of PV interneurons. We find low expression stoichiometry of GRIA2 mRNA relative to other subunits in PV interneurons that is conserved across ferrets, rodents, marmosets and humans, and causes abundant CP-AMPAR expression. Replacing CP-AMPARs in PV interneurons with calcium-impermeable AMPARs increased their orientation selectivity in the visual cortex. Manipulations to induce sparse CP-AMPAR expression demonstrated that this increase was cell-autonomous and could occur with changes beyond development. Notably, excitatory–PV interneuron connectivity rates and unitary synaptic strength were unaltered by CP-AMPAR removal, which suggested that the selectivity of PV interneurons can be altered without markedly changing connectivity. In Gria2-knockout mice, in which all AMPARs are calcium-permeable, excitatory neurons showed significantly degraded orientation selectivity, which suggested that CP-AMPARs are sufficient to drive lower selectivity regardless of cell type. Moreover, hippocampal PV interneurons, which usually exhibit low spatial tuning, became more spatially selective after removing CP-AMPARs, which indicated that CP-AMPARs suppress the feature selectivity of PV interneurons independent of modality. These results reveal a new role of CP-AMPARs in maintaining low-selectivity sensory representation in PV interneurons and implicate a conserved molecular mechanism that distinguishes this cell type in the neocortex

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Nature. - 635, 8038 (2024) , 398-405, ISSN: 1476-4687

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2024
Creator
Hong, Ingie
Kim, Juhyun
Hainmüller, Thomas
Kim, Dong Won
Keijser, Joram
Johnson, Richard C.
Park, Soo Hyun
Limjunyawong, Nathachit
Yang, Zhuonan
Cheon, David
Hwang, Taeyoung
Agarwal, Amit
Cholvin, Thibault
Krienen, Fenna M.
McCarroll, Steven A.
Dong, Xinzhong
Leopold, David A.
Blackshaw, Seth
Sprekeler, Henning
Bergles, Dwight E.
Bartos, Marlene
Brown, Solange P.
Huganir, Richard L.

DOI
10.1038/s41586-024-08027-2
URN
urn:nbn:de:bsz:25-freidok-2573502
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:28 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Hong, Ingie
  • Kim, Juhyun
  • Hainmüller, Thomas
  • Kim, Dong Won
  • Keijser, Joram
  • Johnson, Richard C.
  • Park, Soo Hyun
  • Limjunyawong, Nathachit
  • Yang, Zhuonan
  • Cheon, David
  • Hwang, Taeyoung
  • Agarwal, Amit
  • Cholvin, Thibault
  • Krienen, Fenna M.
  • McCarroll, Steven A.
  • Dong, Xinzhong
  • Leopold, David A.
  • Blackshaw, Seth
  • Sprekeler, Henning
  • Bergles, Dwight E.
  • Bartos, Marlene
  • Brown, Solange P.
  • Huganir, Richard L.
  • Universität

Time of origin

  • 2024

Other Objects (12)