Making Nonwoven Fibrous Poly (ε‐caprolactone) Constructs for Antimicrobial and Tissue Engineering Applications by Pressurized Melt Gyration

A pressurized melt gyration process has been used for the first time to generate poly (ε‐caprolactone) (PCL) fibers. Gyration speed, working pressure, and melt temperature are varied and these parameters influence the fiber diameter and the temperature enabled changing the surface morphology of the fibers. Two types of nonwoven PCL fiber constructs are prepared. First, Ag‐doped PCL is studied for antibacterial activity using Gram‐negative Escherichia coli and Pseudomonas aeruginosa microorganisms. The melt temperature used to make these constructs significantly influences antibacterial activity. Neat PCL nonwoven scaffolds are also prepared and their potential for application in muscular tissue engineering is studied with myoblast cells. Results show significant cell attachment, growth, and proliferation of cells on the scaffolds.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Making Nonwoven Fibrous Poly (ε‐caprolactone) Constructs for Antimicrobial and Tissue Engineering Applications by Pressurized Melt Gyration ; volume:301 ; number:8 ; year:2016 ; pages:922-934 ; extent:13
Macromolecular materials and engineering ; 301, Heft 8 (2016), 922-934 (gesamt 13)

Creator
Xu, Zewen
Mahalingam, Sunthar
Basnett, Pooja
Raimi‐Abraham, Bahijja
Roy, Ipsita
Craig, Duncan
Edirisinghe, Mohan

DOI
10.1002/mame.201600116
URN
urn:nbn:de:101:1-2022112004560055308701
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:25 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Xu, Zewen
  • Mahalingam, Sunthar
  • Basnett, Pooja
  • Raimi‐Abraham, Bahijja
  • Roy, Ipsita
  • Craig, Duncan
  • Edirisinghe, Mohan

Other Objects (12)