Artikel

The reserve price optimization for publishers on real-time bidding on-line marketplaces with time-series forecasting

Today's Internet marketing ecosystems are very complex, with many competing players, transactions concluded within milliseconds, and hundreds of different parameters to be analyzed in the decision-making process. In addition, both sellers and buyers operate under uncertainty, without full information about auction results, purchasing preferences, and strategies of their competitors or suppliers. As a result, most market participants strive to optimize their trading strategies using advanced machine learning algorithms. In this publication, we propose a new approach to determining reserve-price strategies for publishers, focusing not only on the profits from individual ad impressions, but also on maximum coverage of advertising space. This strategy combines the heuristics developed by experienced RTB consultants with machine learning forecasting algorithms like ARIMA, SARIMA, Exponential Smoothing, and Facebook Prophet. The paper analyses the effectiveness of these algorithms, recommends the best one, and presents its implementation in real environment. As such, its results may form a basis for a competitive advantage for publishers on very demanding online advertising markets.

Sprache
Englisch

Erschienen in
Journal: Foundations of Management ; ISSN: 2300-5661 ; Volume: 12 ; Year: 2020 ; Issue: 1 ; Pages: 167-180 ; Warsaw: De Gruyter

Klassifikation
Management
Forecasting Models; Simulation Methods
Econometrics of Games and Auctions
Advertising
Marketing and Advertising: Other
Thema
online marketing
real-time bidding
reserve price optimization
machine learning
forecasting

Ereignis
Geistige Schöpfung
(wer)
Wodecki, Andrzej
Ereignis
Veröffentlichung
(wer)
De Gruyter
(wo)
Warsaw
(wann)
2020

DOI
doi:10.2478/fman-2020-0013
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Wodecki, Andrzej
  • De Gruyter

Entstanden

  • 2020

Ähnliche Objekte (12)