Enhanced human activity recognition in medical emergencies using a hybrid deep CNN and bi-directional LSTM model with wearable sensors
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
1 Online-Ressource.
- Language
-
Englisch
- Bibliographic citation
-
Enhanced human activity recognition in medical emergencies using a hybrid deep CNN and bi-directional LSTM model with wearable sensors ; volume:14 ; number:1 ; day:28 ; month:12 ; year:2024 ; pages:1-24 ; date:12.2024
Scientific reports ; 14, Heft 1 (28.12.2024), 1-24, 12.2024
- Classification
-
Ingenieurwissenschaften und Maschinenbau
- Creator
-
Chandramouli, Nishanth Adithya
Natarajan, Sivaramakrishnan
Alharbi, Amal H.
Kannan, Subhash
Khafaga, Doaa Sami
Raju, Sekar Kidambi
Eid, Marwa M.
El-kenawy, El-Sayed M.
- Contributor
-
SpringerLink (Online service)
- DOI
-
10.1038/s41598-024-82045-y
- URN
-
urn:nbn:de:101:1-2503062111122.756524924207
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:36 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Chandramouli, Nishanth Adithya
- Natarajan, Sivaramakrishnan
- Alharbi, Amal H.
- Kannan, Subhash
- Khafaga, Doaa Sami
- Raju, Sekar Kidambi
- Eid, Marwa M.
- El-kenawy, El-Sayed M.
- SpringerLink (Online service)