Enhanced human activity recognition in medical emergencies using a hybrid deep CNN and bi-directional LSTM model with wearable sensors

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
1 Online-Ressource.
Sprache
Englisch

Erschienen in
Enhanced human activity recognition in medical emergencies using a hybrid deep CNN and bi-directional LSTM model with wearable sensors ; volume:14 ; number:1 ; day:28 ; month:12 ; year:2024 ; pages:1-24 ; date:12.2024
Scientific reports ; 14, Heft 1 (28.12.2024), 1-24, 12.2024

Klassifikation
Ingenieurwissenschaften und Maschinenbau

Urheber
Chandramouli, Nishanth Adithya
Natarajan, Sivaramakrishnan
Alharbi, Amal H.
Kannan, Subhash
Khafaga, Doaa Sami
Raju, Sekar Kidambi
Eid, Marwa M.
El-kenawy, El-Sayed M.
Beteiligte Personen und Organisationen
SpringerLink (Online service)

DOI
10.1038/s41598-024-82045-y
URN
urn:nbn:de:101:1-2503062111122.756524924207
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:36 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Chandramouli, Nishanth Adithya
  • Natarajan, Sivaramakrishnan
  • Alharbi, Amal H.
  • Kannan, Subhash
  • Khafaga, Doaa Sami
  • Raju, Sekar Kidambi
  • Eid, Marwa M.
  • El-kenawy, El-Sayed M.
  • SpringerLink (Online service)

Ähnliche Objekte (12)