Arbeitspapier
Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function
In this paper, we conduct simultaneous inference of the non-parametric part of a partially linear model when the non-parametric component is a multivariate unknown function. Based on semi-parametric estimates of the model, we construct a simultaneous confidence region of the multivariate function for simultaneous inference. The developed methodology is applied to perform simultaneous inference for the U.S. gasoline demand where the income and price variables are contaminated by Berkson errors. The empirical results strongly suggest that the linearity of the U.S. gasoline demand is rejected. The results are also used to propose an alternative form for the demand.
- Sprache
-
Englisch
- Erschienen in
-
Series: IRTG 1792 Discussion Paper ; No. 2020-008
- Klassifikation
-
Wirtschaft
Hypothesis Testing: General
Estimation: General
Semiparametric and Nonparametric Methods: General
- Thema
-
Simultaneous inference
Multivariate function
Simultaneous confidence region
Berkson error
Regression calibration
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Kim, Kun Ho
Chao, Shih-Kang
Härdle, Wolfgang Karl
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
- (wo)
-
Berlin
- (wann)
-
2020
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Kim, Kun Ho
- Chao, Shih-Kang
- Härdle, Wolfgang Karl
- Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
Entstanden
- 2020