Arbeitspapier

A Multinomial Probit Model with Latent Factors: Identification and Interpretation without a Measurement System

We develop a parametrization of the multinomial probit model that yields greater insight into the underlying decision-making process, by decomposing the error terms of the utilities into latent factors and noise. The latent factors are identified without a measurement system, and they can be meaningfully linked to an economic model. We provide sufficient conditions that make this structure identified and interpretable. For inference, we design a Markov chain Monte Carlo sampler based on marginal data augmentation. A simulation exercise shows the good numerical performance of our sampler and reveals the practical importance of alternative identification restrictions. Our approach can generally be applied to any setting where researchers can specify an a priori structure on a few drivers of unobserved heterogeneity. One such example is the choice of combinations of two options, which we explore with real data on education and occupation pairs.

Sprache
Englisch

Erschienen in
Series: IZA Discussion Papers ; No. 11042

Klassifikation
Wirtschaft
Bayesian Analysis: General
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Multiple or Simultaneous Equation Models: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
Thema
multinomial probit
latent factors
Bayesian analysis
marginal data augmentation
educational choice
occupational choice

Ereignis
Geistige Schöpfung
(wer)
Piatek, Rémi
Gensowski, Miriam
Ereignis
Veröffentlichung
(wer)
Institute of Labor Economics (IZA)
(wo)
Bonn
(wann)
2017

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Piatek, Rémi
  • Gensowski, Miriam
  • Institute of Labor Economics (IZA)

Entstanden

  • 2017

Ähnliche Objekte (12)