Prediction of Protein Structure Using Surface Accessibility Data
Abstract: An approach to the de novo structure prediction of proteins is described that relies on surface accessibility data from NMR paramagnetic relaxation enhancements by a soluble paramagnetic compound (sPRE). This method exploits the distance‐to‐surface information encoded in the sPRE data in the chemical shift‐based CS‐Rosetta de novo structure prediction framework to generate reliable structural models. For several proteins, it is demonstrated that surface accessibility data is an excellent measure of the correct protein fold in the early stages of the computational folding algorithm and significantly improves accuracy and convergence of the standard Rosetta structure prediction approach.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Prediction of Protein Structure Using Surface Accessibility Data ; volume:55 ; number:39 ; year:2016 ; pages:11970-11974 ; extent:5
Angewandte Chemie / International edition. International edition ; 55, Heft 39 (2016), 11970-11974 (gesamt 5)
- Creator
- DOI
-
10.1002/anie.201604788
- URN
-
urn:nbn:de:101:1-2022101308134542158597
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:34 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Hartlmüller, Christoph
- Göbl, Christoph
- Madl, Tobias