Prediction of Protein Structure Using Surface Accessibility Data

Abstract: An approach to the de novo structure prediction of proteins is described that relies on surface accessibility data from NMR paramagnetic relaxation enhancements by a soluble paramagnetic compound (sPRE). This method exploits the distance‐to‐surface information encoded in the sPRE data in the chemical shift‐based CS‐Rosetta de novo structure prediction framework to generate reliable structural models. For several proteins, it is demonstrated that surface accessibility data is an excellent measure of the correct protein fold in the early stages of the computational folding algorithm and significantly improves accuracy and convergence of the standard Rosetta structure prediction approach.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Prediction of Protein Structure Using Surface Accessibility Data ; volume:55 ; number:39 ; year:2016 ; pages:11970-11974 ; extent:5
Angewandte Chemie / International edition. International edition ; 55, Heft 39 (2016), 11970-11974 (gesamt 5)

Creator
Hartlmüller, Christoph
Göbl, Christoph
Madl, Tobias

DOI
10.1002/anie.201604788
URN
urn:nbn:de:101:1-2022101308134542158597
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:34 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)