Parametric and Semi-Parametric Bootstrap-Based Confidence Intervals for Robust Linear Mixed Models
Abstract: The linear mixed model (LMM) is a popular statistical model for the analysis of longitudinal data. However, the robust estimation of and inferential conclusions for the LMM in the presence of outliers (i.e., observations with very low probability of occurrence under Normality) is not part of mainstream longitudinal data analysis. In this work, we compared the coverage rates of confidence intervals (CIs) based on two bootstrap methods, applied to three robust estimation methods. We carried out a simulation experiment to compare CIs under three different conditions: data 1) without contamination, 2) contaminated by within-, or 3) between-participant outliers. Results showed that the semi-parametric bootstrap associated to the composite tau-estimator leads to valid inferential decisions with both uncontaminated and contaminated data. This being the most comprehensive study of CIs applied to robust estimators of the LMM, we provide fully commented R code for all methods applied to a po.... https://meth.psychopen.eu/index.php/meth/article/view/6607
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Parametric and Semi-Parametric Bootstrap-Based Confidence Intervals for Robust Linear Mixed Models ; volume:17 ; number:4 ; day:17 ; month:12 ; year:2021
Methodology ; 17, Heft 4 (17.12.2021)
- Creator
-
Mason, Fabio
Cantoni, Eva
Ghisletta, Paolo
- DOI
-
10.5964/meth.6607
- URN
-
urn:nbn:de:101:1-2022010804141399652440
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:33 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Mason, Fabio
- Cantoni, Eva
- Ghisletta, Paolo