Parametric and Semi-Parametric Bootstrap-Based Confidence Intervals for Robust Linear Mixed Models

Abstract: The linear mixed model (LMM) is a popular statistical model for the analysis of longitudinal data. However, the robust estimation of and inferential conclusions for the LMM in the presence of outliers (i.e., observations with very low probability of occurrence under Normality) is not part of mainstream longitudinal data analysis. In this work, we compared the coverage rates of confidence intervals (CIs) based on two bootstrap methods, applied to three robust estimation methods. We carried out a simulation experiment to compare CIs under three different conditions: data 1) without contamination, 2) contaminated by within-, or 3) between-participant outliers. Results showed that the semi-parametric bootstrap associated to the composite tau-estimator leads to valid inferential decisions with both uncontaminated and contaminated data. This being the most comprehensive study of CIs applied to robust estimators of the LMM, we provide fully commented R code for all methods applied to a po.... https://meth.psychopen.eu/index.php/meth/article/view/6607

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Parametric and Semi-Parametric Bootstrap-Based Confidence Intervals for Robust Linear Mixed Models ; volume:17 ; number:4 ; day:17 ; month:12 ; year:2021
Methodology ; 17, Heft 4 (17.12.2021)

Creator
Mason, Fabio
Cantoni, Eva
Ghisletta, Paolo

DOI
10.5964/meth.6607
URN
urn:nbn:de:101:1-2022010804141399652440
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:33 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Mason, Fabio
  • Cantoni, Eva
  • Ghisletta, Paolo

Other Objects (12)